「続・続・続・続・続・続・続・算数よもやまばなし」

2019/2/13

エクタス大宮校教室ニュースエクタス算数科

前回の文末に会った問題です。

 


次の等比数列(3倍の数列)の和を求めてください。


 


1+3+9+27+81+243+729+2187+6561++43046721+129140163


 


まず A=1+3+9+27+81+243+729+2187+6561++43046721+129140163 とします。


 


Aの3倍を考えます。Aの3倍とはそれぞれに3をかけることになりますから、


A×3=(1+3+9+27+81+243+729+2187+6561++43046721+129140163)×3

=3+9+27+81+243+729+2187+6561++43046721+129140163+387420489 です。


 


この式と元の式を比べてみると、 


3+9+27+81+243+729+2187+6561++43046721+129140163 の部分が共通ですね。


 


わかりやすくするために


3+9+27+81+243+729+2187+6561++43046721+129140163=B とすると、


 


A=1+B A×3=A+A+A=B+387420489 


 


この2つを比べると、


A+A=387420488 なので、A=387420488÷2=193710244


 


正解は 193710244 でした。


 


こうしたアプローチの方法は、算数や数学で必要になりますから、ぜひ覚えておきましょう。


 


算数では「パスカルの三角形」と呼ばれるピラミッド型の数列が有名です。


 



1   1


1    2     1


1     3   3     1


1     4      6       4       1


1     5     10     10      5      1


1     6     15     20     15      6     1


1     7     21     35    35      21     7     1


1     8     28    56     70     56     28     8     1


1     9     36    84      126  126       84    36    9     1


 


それぞれの列の和を1列目から10列目まで合計してみると、


1+2+4+8+16+32+64+128+256+512



なので今回のアプローチを利用すると、



1+2+4+8+16+32+64+128+256+512=A


A×2=2+4+8+16+32+64+128+256+512+1024



A+A+1=1+2+4+8+16+32+64+128+256+512+1024



A+A+1-A=1024



A=1024-1=1023



と簡単に計算ができます。


関連記事related posts

エクタス大宮校教室ニュースエクタス算数科

「算数のおはなし」

こんにちは。大宮校の宮下です。今回は、算数のアプローチについて考察してみます。 文章中の分数は割合を表していますが、数学ではこのまま分数で処理をすることがほとんどです。しかしながら算数は数学ではありません。算数はエレガン…

エクタス大宮校教室ニュース

:中学受験生的G・Wの過ごし方 ~旅行篇~

 もうすぐ5月の大型連休(G・W)を迎えようとしています。 ご家族でお出かけになったり、遠出の旅行などにも行かれることもあるでしょう。もしかしたら、小学6年生はそれどころではないかもしれませんね。 受験勉強をしているお子…

エクタス大宮校教室ニュースエクタス算数科知って得するマメ知識

算数よもやまばなし

小2で覚える「かけ算九九」ですが、今から1200年~1300年ほど前の奈良時代以前に「かけ算九九」が使われていた記録が残っています。特産物や地名の由来を諸国から集めた『風土記』と同時代に、様々な階級の歌を過去に遡って集め…

新着記事latest posts

no image

2021/10/18

エクタス算数科

「2022問題」対策について

毎年、西暦の数字にまつわる問題はよく出題されます。来年は2022年ですから、2022にまつわる問題が出題されることは予想できます。これを「2022問題」と呼ぶことにします。この対策として次の問題を考えてみましょう。 【問…

エクタス算数科

no image

2021/10/13

エクタス国語科より

筑駒・男女御三家・駒東合格へのあと100日の国語学習法

10月24日で、2月1日まであと100日となります。これは毎年共通の残り日数、残り時間です。受験生は大体週に最低4日は塾の授業に参加していると思うので、100に7分の4を掛けて100から引くと、塾の授業がない日が出ます。…

エクタス国語科より

no image

2021/10/13

エクタス理科より

ノーベル物理学賞を日本出身者が受賞

暑さが一段落して少しずつ涼しくなってきていますね。受験生のみなさん、気温の変化に気をつけて勉強に励んで下さい。 さて、先日2021年のノーベル賞受賞者が発表され、日本出身の眞鍋淑郎氏がノーベル物理学賞を受賞しました。受賞…

エクタス理科より

pagetop