算数の記述問題

2021/1/21

未分類

昨今の算数の入試問題では、計算をして答えを数字で答えるだけではなく、ある事柄について理由を説明する記述問題が出題されることが増えてきています。1問、例題を解いてみましょう。

【問題】
1円玉、10円玉、100円玉、1000札を合せて60枚使ってちょうど10000円を支払うことはできますか。できる場合はその例を、また、できない場合はその理由を説明しなさい。

いかがでしょうか。一見できそうです。枚数に決まりがなければ、どんな場合に10000円を支払うことができるでしょうか。例えば1円玉10枚、10円玉9枚、100円玉9枚、1000円札9枚の計37枚なら10000円になりますよね。あとはここから、うまく両替すれば……。とここで、できないのではないか?と気づくことが大切です。この状態から例えば100円玉1枚を10円玉10枚に両替すると、合計の枚数は9枚増えますね。すると両替によって増える枚数は9の倍数になるはずです。しかし、37にいくら9の倍数をたしても60枚にはなりませんよね。よってできないということはわかるでしょう。

さて問題はこれをどう記述するかということです。さきほどの状態をうまく文章にしても得点はもらえるでしょうが、ここではさらにポイントとなる考え方をお教えしようと思います。それは、「余りに注目する」ということです。さきほど9の倍数がカギになることに気づくことができました。ここで、1、10、100、1000、10000という数字を見てみると、これらはすべて9で割った余りが1であるということに気づきます。つまり、この問題は、
「9で割って1あまる数を60個たして、9で割って1余る数を作れるか」という問題だったのです。9で割って1あまる数を60個たすと、1×60÷9=6余り6ですから、9で割って1余る数にはなりません。正解例としてはこのような文章になるでしょう。

【答え】
1、10、100、1000はすべて9で割ると余りが1の数であるから、60枚すべての合計を9で割ると60÷9=6余り6となる。しかし10000は9でわると1あまるので、いかなる組合せでも、合計を10000にすることはできない。

このように余りに注目して理由を記述させる問題は出題頻度も比較的高いので、このような発想は覚えておくとよいでしょう。

関連記事related posts

関連記事はありません

新着記事latest posts

no image

2021/10/18

エクタス算数科

「2022問題」対策について

毎年、西暦の数字にまつわる問題はよく出題されます。来年は2022年ですから、2022にまつわる問題が出題されることは予想できます。これを「2022問題」と呼ぶことにします。この対策として次の問題を考えてみましょう。 【問…

エクタス算数科

no image

2021/10/13

エクタス国語科より

筑駒・男女御三家・駒東合格へのあと100日の国語学習法

10月24日で、2月1日まであと100日となります。これは毎年共通の残り日数、残り時間です。受験生は大体週に最低4日は塾の授業に参加していると思うので、100に7分の4を掛けて100から引くと、塾の授業がない日が出ます。…

エクタス国語科より

no image

2021/10/13

エクタス理科より

ノーベル物理学賞を日本出身者が受賞

暑さが一段落して少しずつ涼しくなってきていますね。受験生のみなさん、気温の変化に気をつけて勉強に励んで下さい。 さて、先日2021年のノーベル賞受賞者が発表され、日本出身の眞鍋淑郎氏がノーベル物理学賞を受賞しました。受賞…

エクタス理科より

pagetop