比について~論理学的側面から~

2015/11/12

エクタス算数科

「受験算数の主役は何でしょう?」という問いに対する答えの候補は色々とあります。ですが,おそらく真っ先に上がるのは比ではないでしょうか?

 

今回は,比について一風変わった切り口から論じてみます。それは,論理学的な切り口です。

 

「論理学的」とは,ざっくばらんに言ってしまえば,言葉・記号の使い方に注目して物事を整理する,ということです。具体的には,次のようになります。

 

数を表す記号…’0”1”2”0.23”2/3’等
関数を表す記号…’□+△”□÷△”□+3”□+(□×△)’等
性質・関係を表す記号…’□=△”□=0.5”□+3=△’等

関数を表す記号は,□や△の位置に数を表す記号を代入すると,数を表す記号になります。たとえば,’2+3’は5という数を表す記号です。
性質・関係を表す記号は,□や△の位置に数を表す記号を代入すると,真か偽を表す記号になります。たとえば,’2=0.5’は偽を表し,’1+3=4’は真を表します。

 

さて,それでは比を表す’□:△’という記号は,どのタイプに分類されるのでしょうか。いくつか実際の使用例を見てみましょう。

 

‘1:2=2:4’は真を表します。とすると,’1:2’も’2:4’も’□=△’の□と△にそれぞれ代入できるのですから,’1’や’2/4’のように,数を表す記号であるように見えます。ところが…

 

‘(1:2)+3”1:2=3’これらは意味が分からない,変な式ですね。また,日常的な言葉づかいに視点を移しても,’1/2リットル’という言い方はできますが’1:2リットル’という言い方はできません。

 

ですから,’1:2’という記号は,’=’という等号の両側に置くことはできるにもかかわらず,数を表しているのではないということになります。したがって,比の記号’□:△’は,関数を表す記号ではない,ということになります。

 

そろそろ暫定的な結論に入りましょう。’□:△=○:☆’という関係を表す記号の一部分として,比の記号は意味を成すのです。’1:2=2:4’は真を表しますが,’1:2’や’2:4’自体が何らかの算数の対象を表しているのではありません。比とは4つの数の間の関係であって,’□:△=○:☆’という見た目の上では複合的な記号によって表される,ということです。

 

以上,「比とは関係である」というごくごく当たり前のことを,記号の使い方という側面から見てみました。

関連記事related posts

エクタス算数科

小立方体通過の問題

以下に紹介するのは,小立方体を組み合わせて作った直方体の対角線の問題です。長方形・直方体の対角線が正方形・立方体をいくつ通過するのかを問う問題は,受験算数の伝統的な典型問題です。ただし,今回紹介する問題は,数の性質をきっ…

エクタス算数科

河童先生の算数問題に挑戦! 5

第4回の問題は解けたかな? 【解答】 3251円。   さいふから 1000円さつ 3枚 100円玉 2枚 10円玉 5枚 1円玉 1枚 の3251円を出すと、 3251-2696=555円となり、 3+2+5…

エクタス算数科

河童先生の算数問題に挑戦! 6

第5回の問題は解けたかな? 【解答】   ⑥①⑩⑧    ⑤⑨②     ④⑦     ③   さて、今回の問題です。 【問題】 下の式の○、□、△、…

新着記事latest posts

2025/4/21

お知らせピックアップ

渋谷教育学園幕張中 学校説明会 5/30開催!

Z会主催 エクタス協賛渋谷教育学園幕張中学校 学校説明会のご案内【参加無料】 5/30(金)に渋谷教育学園幕張中学校の学校説明会を開催いたします。同校は自調自考をモットーに生徒の成長を促し、海外大学も含め全国でも屈指の進…

お知らせピックアップ

2025/4/10

エクタス国語科より

『記述問題は後ろから考えよう』

学校でも新学年を迎え、入学式・始業式と行事が多かったことと思います。学校生活がようやく落ち着いたころにはすぐGW…でも、受験生にとっては「遊ぶ期間」ではなく「勉強漬けになる期間」かもしれませんね。 今年の開成中学の国語は…

エクタス国語科より

2025/4/9

お知らせピックアップ

小6「筑駒・御三家・駒東 最難関スーパー講座」【2025年度前期】申込受付中!

講座は土曜日午前を中心に設定、1科目から受講が可能です。受講生には担当講師のナビゲートにより個別カリキュラムを提案。 毎年筑駒・御三家・駒東中合格者を輩出するエクタスの看板講座。最難関校の入試傾向に直結する教科別講座を今…

お知らせピックアップ

pagetop