日付と素数

2019/6/13

エクタス算数科

 

ある特別な素数について考えます。たとえば6353は素数ですが、この数の一番左の数を消した353も素数です。また、さらに一番左の数を消した53も素数で、最後に左側の数を消した3も素数になります。このような素数を「スペシャル素数」と呼ぶことにします。


いま、日付について、月、日の順に数字を並べて、2けた~4けたの数を考えます。例えば、613日ならば、613とする、ということです。これらの数の中でスペシャル素数になる日付は何回あるのでしょうか。


 


2けたの数になる場合、1313日)、1717日)、2323日)、3737日)、4343日)、5353日)、6767日)、7373日)、8383日)、9797日)の10回です。


 


3けたの数になる場合


113113日または113日)、223223日)、313313日)、317317日)、523523日)、613613日)、617617日)、823823日)の9回です。113113日と113日が考えられるので日付は2回と数えます。凡ミスをしないように。


 


そして最後に4けたの数になる場合は、実は1日しかありません。昨年までは祝日だったのに今年からは平日になるあの日ですね。わかりますよね。


関連記事related posts

エクタス算数科

真実はいつも1つ?

 みなさんは、『おばけ煙突』を知っていますか?  かつて東京都足立区にあった、火力発電所(千住火力発電所)の煙突のことで、近隣の住民からそう呼ばれていました。ちょっと昔の話になりますので、おじいさんやおばあさん世代だとご…

エクタス算数科筑駒

2015 筑駒中入試 算数 講評

【総評】 〇合格ボーダーは12問中10~11問正解。配点が1問8~10点と高いため、9問正解では厳しいと思われる。 〇例年、出題されていた「速さ」「点の移動」「水量変化」などの時間とともに変化する様子を考える問題が、出題…

エクタス算数科

大学入試問題にチャレンジしよう

4個の整数1,a,b,cは1<a<b<cを満たしている。 これらの中から相異なる2個を取り出して和を作ると、1+aからb+cまでのすべての整数の値が得られるという。 a ,b,cの値を求めよ。(京都大学・文系) 小学生で…

新着記事latest posts

2025/4/21

お知らせピックアップ

渋谷教育学園幕張中 学校説明会 5/30開催!

Z会主催 エクタス協賛渋谷教育学園幕張中学校 学校説明会のご案内【参加無料】 5/30(金)に渋谷教育学園幕張中学校の学校説明会を開催いたします。同校は自調自考をモットーに生徒の成長を促し、海外大学も含め全国でも屈指の進…

お知らせピックアップ

2025/4/10

エクタス国語科より

『記述問題は後ろから考えよう』

学校でも新学年を迎え、入学式・始業式と行事が多かったことと思います。学校生活がようやく落ち着いたころにはすぐGW…でも、受験生にとっては「遊ぶ期間」ではなく「勉強漬けになる期間」かもしれませんね。 今年の開成中学の国語は…

エクタス国語科より

2025/4/9

お知らせピックアップ

小6「筑駒・御三家・駒東 最難関スーパー講座」【2025年度前期】申込受付中!

講座は土曜日午前を中心に設定、1科目から受講が可能です。受講生には担当講師のナビゲートにより個別カリキュラムを提案。 毎年筑駒・御三家・駒東中合格者を輩出するエクタスの看板講座。最難関校の入試傾向に直結する教科別講座を今…

お知らせピックアップ

pagetop