速さのいじわる問題です。

2015/10/3

エクタス算数科

「池の周りをAくんとBくんが同じ位置から反対方向に回ります。Aくんは、分速60m、分速120m、分速60m、…と速さを1分ごとに交互に変えて進みます。Bくんは一定の速さで進みます。Aくんが池の周りをちょうど8周したときにBくんが池の周りをちょうど9周してスタート地点で出会いました。このときを含めてスタートしてから2人は何回出会ったでしょうか。」

 

1周の長さもBくんの速さもわからないので手のつけようがないと感じる方も多いのではないでしょうか。もしAくんとBくんが最後に出会ったときが「2の倍数」分後であれば、算数が得意な生徒であれば、「速さが途中で変わったらつるかめ算か平均の速さ」と考えることができるかもしれません。Aくんが分速60mと分速120mで進んだ時間は同じなので、平均の速さは分速90mということになりますから、Bくんは分速80mだとわかりますね。それならば池の周りを8090の最小公倍数である720mにしてダイヤグラムを書き、交点の数を数えれば正解を出すことはできます。しかし、この問題では、AくんとBくんが最後に出会ったときが「2の倍数」分後であるかどうかはわからないので、この解き方は厳密に言えば正解とは言えません。

 

実はこの問題は、「出会う」という言葉の意味が問われています。この問題で「出会う」とは何か。「出会う」とは「2人合わせて1周分の距離を進む」ことなのです。そうですよね?この2人は最終的に合わせて17周分の距離を進んでいますから、出会う回数は17回です。

途中をどのような速さで進もうが関係ありません。

 

「出会う」という簡単な言葉でも、算数的にしっかり理解しているかどうかは意外に難しいものです。別の言葉を使って言い替えることができて初めて理解していると言えます。「わかったフリ」していませんか?

関連記事related posts

エクタス算数科

「続・続・続・続・続・続・続・続・算数よもやまばなし」

今年の算数の入試問題で多く目にしたのは【会話文による出題】でした。 もともと普連土学園中の定番で、最終問題が会話文形式で、その会話中の   を埋めていくというものでしたが、他の学校は、あまり見かけることがなく、普連土学園…

エクタス算数科

「2022問題」対策について

毎年、西暦の数字にまつわる問題はよく出題されます。来年は2022年ですから、2022にまつわる問題が出題されることは予想できます。これを「2022問題」と呼ぶことにします。この対策として次の問題を考えてみましょう。 【問…

エクタス算数科

【計算問題を考える】

算数ができるということはどういうことでしょうか。一言で表すことは難しいですが、特に受験生にとっては合否が得点という形で評価される以上、算数ができる=入試問題で得点できる、と言えるでしょう。そしてほとんどすべての問題におい…

新着記事latest posts

2025/3/27

お知らせ筑駒

筑駒実力確認テスト(新小6生)

筑駒をめざす小6生を対象に、エクタス「筑駒実力確認テスト」を実施します。筑駒入試の出題傾向をもとに問題作成していますので、現段階での実力や今後の課題が明確にわかります。結果は即日採点し、返却します。 教科 算数・国語・理…

お知らせ筑駒

2025/3/27

お知らせ筑駒

筑駒必勝特訓講座(新小6生)

筑駒入試に特化した、エクタス最高峰の講座 筑駒・御三家・駒東中入試に傑出した実績を残してきたエクタスが、強い思いを込めて、筑駒入試に特化した講座を開講します。これまでエクタス講師陣が長年にわたって蓄積してきた指導方法、テ…

お知らせ筑駒

2025/3/21

お知らせ

新小1コース春期特別体験会

エクタスでは、2025年度の新小1コース4月開講に先立ち、無料で授業体験できる『春期特別体験会』を実施します。ぜひこの機会にエクタスの指導をお試しください。筑駒・開成・桜蔭をはじめとする、最難関中学合格のために特化したカ…

お知らせ

pagetop