算数のおはなし その2

2020/11/23

エクタス算数科

こんにちは。大宮校の宮下です。
今回も前回に引き続き、算数のアプローチについて考察してみます。

例①  37㎞を11.1分で進むとき,24分で何㎞進みますか。

速さを求めると、37÷11.1×60=200より時速200㎞。
この速さで24分進むと、200×24÷60=80㎞になる。
というのが一般的な解き方ですが、面白みもなく計算も面倒です。
同じ速さであれば割合や比は等しいはずです。

この問題を図式化してみると、  
 11.1分 → 37㎞
 24分   →    
37×3=111 より、時間を10倍して3で割ると道のりになることがわかるので、
24×10÷3=80(㎞)と同じ答えを暗算で出すことができました。
80㎞という答えを出すのに、面倒な計算を回避できるのです。これが算数の醍醐味です。数学と根本的なとらえ方が違います。直線的に解くのではなく、面の広がりを持たせることで、結果的に答えに短距離で向かうことができるのです。ゴリゴリ計算もしていないので、いわゆる計算ミスの予防にもなります。
ちなみに、前出の 37×3=111 は受験生の常識です。
このほかにも、7×11×13=1001  73×137=10001 は必須です。
更に発展させたものとして、11×101=1111  3×7×11×13×37=111111 
11×73×101×137=11111111  などもあります。

例②  1,3,6,10,15,21,28,36,45,55,… の89番目と90番目の和はいくつですか。

三角数という階差数列の問題です。 
たとえば9番目は、1+2+3+4+5+6+7+8+9=(1+9)×9÷2=45で、
10番目は、1+2+3+4+5+6+7+8+9+10=(1+10)×10÷2=55です。

89番目は(1+89)×89÷2=4005、90番目は(1+90)×90÷2=4095なので、
4005+4095=8100 というのが一般的な解き方です。
ですが、この三角数には興味深い性質があるので、それを利用するととてもエレガントに解くことができます。
9番目と10番目の和は、45+55=100 になりますね。実はこの100は、10番目の10の平方数になっているのです。
ですから89番目と90番目の和は、90×90=8100 になります。
また、89番目と90番目の差は90ですから、このことを利用すると、89番目と90番目を簡単に求めることができます。
 90÷2=45 
 90×90=8100  8100÷2=4050
となるので、
 89番目…4050-45=4005
 90番目…4050+45=4095
等差数列の和の公式でゴリゴリ計算して解くよりもスマートになりましたね。
ちなみに、三角数は、1から始まる整数の和として式を立てますが、このことを利用して式を作ると、N番目の三角数=(N×N+N)÷2 というとてもシンプルな形になります。

この三角数にはほかにもこんな性質があります。

三角数13610152128364555
三角数の平方 1936100225441784129620253025
立方数   1827641252163435127291000

連続する三角数の平方の差は、同順の立方数になっています。
例えば、三角数の9番目の平方数と10番目の平方数はそれぞれ45×45=2025と55×55=3025ですが、その差は3025-2025=1000で、これは10×10×10=1000と同じです。
この法則はどの2つにも当てはまります。

考察の結論ですが、【当たり前と思って、使っているその式は本当に最善の手法なのか】、【まだまだ自分の知らないアプローチの仕方があるのではないか】、という問いかけを常にしていくことができれば、筑駒・御三家・駒東に近づくことができるのではないでしょうか。

関連記事related posts

エクタス算数科

算数よもやまばなし

こんにちは。大宮校の宮下です。 今回は、前回の『六十三減算』に引き続き、これをさらに進化させた『百五減算』を紹介します。 西暦1743年に出版された【勘者御伽雙紙】は、上中下の3巻からなる算数や数学の問題とその解説を載せ…

エクタス算数科

【算数を勉強する上で】

新しく受験勉強を始める人たちも多い時期ですので,今回は算数の勉強の仕方について書いてみたいと思います。算数は積み上げ教科とも言われ,一朝一夕に成果が出にくい教科です。そのためか,向いている向いていない…のようにセンスで評…

エクタス算数科

河童先生の算数問題に挑戦! 9

前回の問題は解けたかな? 【解答】 (1) 17+28=45, 14+58=72, 24+57=81 (2) 356 どちらの問題も、とにかく手を動かして、与えられてルール通りにあてはまるようやってみようとするせっきょく…

新着記事latest posts

2025/4/21

お知らせピックアップ

渋谷教育学園幕張中 学校説明会 5/30開催!

Z会主催 エクタス協賛渋谷教育学園幕張中学校 学校説明会のご案内【参加無料】 5/30(金)に渋谷教育学園幕張中学校の学校説明会を開催いたします。同校は自調自考をモットーに生徒の成長を促し、海外大学も含め全国でも屈指の進…

お知らせピックアップ

2025/4/10

エクタス国語科より

『記述問題は後ろから考えよう』

学校でも新学年を迎え、入学式・始業式と行事が多かったことと思います。学校生活がようやく落ち着いたころにはすぐGW…でも、受験生にとっては「遊ぶ期間」ではなく「勉強漬けになる期間」かもしれませんね。 今年の開成中学の国語は…

エクタス国語科より

2025/4/9

お知らせピックアップ

小6「筑駒・御三家・駒東 最難関スーパー講座」【2025年度前期】申込受付中!

講座は土曜日午前を中心に設定、1科目から受講が可能です。受講生には担当講師のナビゲートにより個別カリキュラムを提案。 毎年筑駒・御三家・駒東中合格者を輩出するエクタスの看板講座。最難関校の入試傾向に直結する教科別講座を今…

お知らせピックアップ

pagetop