連続する整数による和分解

2020/7/6

エクタス算数科

問題です。

1から100までの整数のうち、1以上の連続する整数の和で表すことができる整数について考えます。たとえば、3=1+2、6=1+2+3、33=10+11+12のように、3、6、33は連続する整数の和で表すことができます。1から100までの整数のうち、このように連続する整数の和で表すことができる整数は何個ありますか。(平成25年市川・改題)

最近このような連続する整数の和に分解する問題を目にすることが多くなってきました。開成、聖光学院、渋谷幕張などの難関校でも出題されています。

ある整数Xが連続する整数の和で表されるかどうかは、「Xの約数のうち、1以外に奇数の約数があるかどうか」によって決まります。
Xが連続する整数の奇数個の和で表される場合、個数がXの約数になります。例えば、6=1+2+3の場合、個数は3で平均は2です。6の奇数の約数は3ですね。
Xが連続する整数の偶数個で表される場合、平均がXの奇数の約数の半分になります。例えば、10=1+2+3+4のとき、個数は4で、平均は2.5です。10の奇数の約数は5ですから、その半分が平均になっているということです。

よって、1以外の奇数の約数があれば、連続する整数で表すことができるということになります。例えば、63には、1以外の奇数の約数が3、7、9、21とありますね。
63=20+21+22(個数が3個)
63=6+7+8+9+10+11+12(個数が7個)
63=3+4+5+6+7+8+9+10+11(個数が9個)
63=9+10+11+12(平均が21の半分である10.5)
このように63は4通りの連続する整数の和で表すことができるのです。

つまり1以外の奇数の約数の個数だけ連続する整数の和で表す表し方があり、連続する整数の和で表せないということは、1以外の奇数の約数がない、ということになります。
よって、1から100までで、1以外の奇数の約数がない数は、1、2、4、8、16、32、64の7個ですから、はじめの問題の答は93個となります。

関連記事related posts

エクタスニュースエクタス算数科

小1生の保護者の方へ:初めての試行力・記述力テストについて

こんにちは、エクタスの荒井です。小学1年生の塾生が本年度初めての、試行力(算数)・記述力(国語)テストを6月に受験しました。(7月以降は、同一試験を一般生も受験可能です。)塾生は全員受験をお願いしています。受験した感想は…

エクタス算数科

算数よもやまばなし

こんにちは。大宮校の宮下です。 ■2020年栄東中(東大Ⅰ)入試問題より 分数の割り算は小6教科書上の中盤に登場します。そこではこんな説明がなされています。 ÷1は変わらないからということなのですが、何かキツネにつままれ…

エクタス算数科

河童先生の算数問題に挑戦! 8

今回の問題は、2問あります。 (1)がエクタスの小学2年生用教材で、(2)が筑波大附属中で今年出題された問題です。 どちらも手を動かしてかんがえましょう。     【問題】  (1)下のひっ…

新着記事latest posts

お知らせ

2025/7/18

エクタス理科より麻布中

ジャパニーズ・ビートル~日本から世界へ広がった外来種問題

皆さんは「ジャパニーズ・ビートル」という昆虫を知っていますか?最近、フランスに上陸したことがわかりニュースになっていました。「ジャパニーズ・ビートル」とは、マメコガネという日本の在来種で、小さいコガネムシのなかまです。い…

エクタス理科より麻布中

2025/7/16

お知らせピックアップ

【9/23開催】小1・2特別体験会

エクタスでは、小1・小2のお子さまを対象に、無料で授業体験できる『特別体験会』を実施します。最難関中学合格のために、「低学年の今しかできないこと」「低学年だからやるべきこと」を追求するエクタスの指導を体験いただけます。ぜ…

お知らせピックアップ

pagetop