連続する整数による和分解

2020/7/6

エクタス算数科

問題です。

1から100までの整数のうち、1以上の連続する整数の和で表すことができる整数について考えます。たとえば、3=1+2、6=1+2+3、33=10+11+12のように、3、6、33は連続する整数の和で表すことができます。1から100までの整数のうち、このように連続する整数の和で表すことができる整数は何個ありますか。(平成25年市川・改題)

最近このような連続する整数の和に分解する問題を目にすることが多くなってきました。開成、聖光学院、渋谷幕張などの難関校でも出題されています。

ある整数Xが連続する整数の和で表されるかどうかは、「Xの約数のうち、1以外に奇数の約数があるかどうか」によって決まります。
Xが連続する整数の奇数個の和で表される場合、個数がXの約数になります。例えば、6=1+2+3の場合、個数は3で平均は2です。6の奇数の約数は3ですね。
Xが連続する整数の偶数個で表される場合、平均がXの奇数の約数の半分になります。例えば、10=1+2+3+4のとき、個数は4で、平均は2.5です。10の奇数の約数は5ですから、その半分が平均になっているということです。

よって、1以外の奇数の約数があれば、連続する整数で表すことができるということになります。例えば、63には、1以外の奇数の約数が3、7、9、21とありますね。
63=20+21+22(個数が3個)
63=6+7+8+9+10+11+12(個数が7個)
63=3+4+5+6+7+8+9+10+11(個数が9個)
63=9+10+11+12(平均が21の半分である10.5)
このように63は4通りの連続する整数の和で表すことができるのです。

つまり1以外の奇数の約数の個数だけ連続する整数の和で表す表し方があり、連続する整数の和で表せないということは、1以外の奇数の約数がない、ということになります。
よって、1から100までで、1以外の奇数の約数がない数は、1、2、4、8、16、32、64の7個ですから、はじめの問題の答は93個となります。

関連記事related posts

エクタス算数科

小3以上向け・場合の数の問題

 小3以上向けの,場合の数の問題を一問あげます。解き方をどう組み立てていくかという事に加えて,文章で提示されている事態をきっちりととらえられるかが問われる問題です。難易度自体はあまり高くありません。よろしければ…

エクタス算数科

「2022問題」対策について その2

こんにちは。大宮校の宮下です。 毎年、西暦の数字にまつわる問題はよく出題されます。来年は2022年ですから、2022にまつわる問題が出題されることは予想できます。これを「2022問題」と呼ぶことにします。前回(11月1日…

エクタス算数科開成中

2025年入試|開成中算数所感

2025年度の中学入試も一段落しました。受験生関係者の皆様はお疲れ様でした。 今年の入試もいろいろと興味深い問題が出題されました。今回はその中から開成中の算数入試に関してとりあげます。 この学校は,毎年私たちの予想を良い…

新着記事latest posts

2025/3/27

お知らせ筑駒

筑駒実力確認テスト(新小6生)

筑駒をめざす小6生を対象に、エクタス「筑駒実力確認テスト」を実施します。筑駒入試の出題傾向をもとに問題作成していますので、現段階での実力や今後の課題が明確にわかります。結果は即日採点し、返却します。 教科 算数・国語・理…

お知らせ筑駒

2025/3/27

お知らせ筑駒

筑駒必勝特訓講座(新小6生)

筑駒入試に特化した、エクタス最高峰の講座 筑駒・御三家・駒東中入試に傑出した実績を残してきたエクタスが、強い思いを込めて、筑駒入試に特化した講座を開講します。これまでエクタス講師陣が長年にわたって蓄積してきた指導方法、テ…

お知らせ筑駒

2025/3/21

お知らせ

新小1コース春期特別体験会

エクタスでは、2025年度の新小1コース4月開講に先立ち、無料で授業体験できる『春期特別体験会』を実施します。ぜひこの機会にエクタスの指導をお試しください。筑駒・開成・桜蔭をはじめとする、最難関中学合格のために特化したカ…

お知らせ

pagetop