日付と素数

2019/6/13

エクタス算数科

 

ある特別な素数について考えます。たとえば6353は素数ですが、この数の一番左の数を消した353も素数です。また、さらに一番左の数を消した53も素数で、最後に左側の数を消した3も素数になります。このような素数を「スペシャル素数」と呼ぶことにします。


いま、日付について、月、日の順に数字を並べて、2けた~4けたの数を考えます。例えば、613日ならば、613とする、ということです。これらの数の中でスペシャル素数になる日付は何回あるのでしょうか。


 


2けたの数になる場合、1313日)、1717日)、2323日)、3737日)、4343日)、5353日)、6767日)、7373日)、8383日)、9797日)の10回です。


 


3けたの数になる場合


113113日または113日)、223223日)、313313日)、317317日)、523523日)、613613日)、617617日)、823823日)の9回です。113113日と113日が考えられるので日付は2回と数えます。凡ミスをしないように。


 


そして最後に4けたの数になる場合は、実は1日しかありません。昨年までは祝日だったのに今年からは平日になるあの日ですね。わかりますよね。


関連記事related posts

エクタス算数科

「算数のおはなし その6」

こんにちは。大宮校の宮下です。 今日は、筑駒・御三家・駒東の算数入試を比較してみます。 (参考)2022年度各校の算数の試験時間・大問数(小問総数)算数配点/4科配点     解答用紙の有無 1問当たりの平均時間と4科合…

エクタス算数科

西欧近代の数学と日本

日本で本格的に西欧近代の数学が教えられ始めたのは意外と新しく、1877年(明治10年)に洋行帰りの菊地大麓(だいろく)が東京大学理学部教授となって物理学と数学を講じ始めたのが一つの目安のようです。この後、数学科が独立する…

エクタス算数科

レピュニット

1、11、111、1111、11111……と各位に1が並ぶ数のことをレピュニットといいます。また、これらの中で素数である数のことをレピュニット素数といいます。 レピュニット素数を小さい順に探してみましょう。まず、1は素数…

新着記事latest posts

2025/3/27

お知らせ筑駒

筑駒実力確認テスト(新小6生)

筑駒をめざす小6生を対象に、エクタス「筑駒実力確認テスト」を実施します。筑駒入試の出題傾向をもとに問題作成していますので、現段階での実力や今後の課題が明確にわかります。結果は即日採点し、返却します。 教科 算数・国語・理…

お知らせ筑駒

2025/3/27

お知らせ筑駒

筑駒必勝特訓講座(新小6生)

筑駒入試に特化した、エクタス最高峰の講座 筑駒・御三家・駒東中入試に傑出した実績を残してきたエクタスが、強い思いを込めて、筑駒入試に特化した講座を開講します。これまでエクタス講師陣が長年にわたって蓄積してきた指導方法、テ…

お知らせ筑駒

2025/3/21

お知らせ

新小1コース春期特別体験会

エクタスでは、2025年度の新小1コース4月開講に先立ち、無料で授業体験できる『春期特別体験会』を実施します。ぜひこの機会にエクタスの指導をお試しください。筑駒・開成・桜蔭をはじめとする、最難関中学合格のために特化したカ…

お知らせ

pagetop