倍数の見分け方

2020/8/31

エクタス算数科

倍数の見分け方、というものが算数にはあります。知っている人も多いはずです。もちろん、例えば、3の倍数の見分け方…と言っても、実際に3で割って割り切れるかどうか、では見分け方としては認められません。

★3の倍数の見分け方…各位の数字の和が3の倍数

でしたね。
ですが、そのこと(★)自体を知っているかどうかが大切なのではありません。

①そのこと(★)を知っていると、その先に何があるのか(そのことを利用してどんなことができるのか)?
②そのこと(★)が成り立つのはどうしてなのか?

という2つの視点が必要です。②については10進法を正しく理解できているかどうかが試される非常に重要な説明があり、そのことが理解できれば9の倍数の見分け方も当然理解できますすし、ちょっと頑張れば11の倍数や7や13の倍数の見分け方も腑に落ちる筈です。詳しくはここでは割愛しますが、是非自分で調べてみてください。
ここでは①について考えます。

例えば、次の数は3の倍数ですか? 
(あ)111  (い)100100010000  (う)123456789  (え)314031403140

正解はすべて3の倍数です。
全部足すと、あ:3 い:3 う:45 え:24 ですべて確かに3の倍数ですが、そういうことではもったいないです。もっと上手に考えられませんか?
(あ)同じ数字を3個並べていますので、3の倍数です。
(い)0は無視できます。つまり(あ)と同じです。
(う)3個周期で和が3の倍数ですので、9個あればこれも3の倍数です。専門的には3で割った余りで書き直すと120120120になり3の倍数です。
(え)3140が「3」回ありますので3の倍数です。(あ)の応用です。
もう少し突っ込むと、(う)は3個の和が3の倍数で、それが「3」回あるので、和は9の倍数です。(え)は3140の和が3の倍数ではないので、全体は9の倍数になりません。例えば、3180を3回繰り返せば9の倍数です。
じゃあ、これはどうなの?と、自分で問題を考えることができるようになれば合格です。ただ問題集の問題を解くよりも勉強になりますね!

関連記事related posts

エクタス算数科

連続する整数による和分解

問題です。 1から100までの整数のうち、1以上の連続する整数の和で表すことができる整数について考えます。たとえば、3=1+2、6=1+2+3、33=10+11+12のように、3、6、33は連続する整数の和で表すことがで…

エクタス算数科

算数の記述問題

昨今の算数の入試問題では、計算をして答えを数字で答えるだけではなく、ある事柄について理由を説明する記述問題が出題されることが増えてきています。1問、例題を解いてみましょう。 【問題】1円玉、10円玉、100円玉、1000…

エクタス算数科

覚えておくと便利な暦

暦の問題を苦手にしている生徒は意外と多い気がします。日付と曜日を答える問題などはその基本中の基本ですから、しっかり正解しておきたいですね。 【問題】 今年の4月4日は木曜日です。では今年の12月25日は何曜日ですか。 【…

新着記事latest posts

2025/4/21

お知らせピックアップ

渋谷教育学園幕張中 学校説明会 5/30開催!

Z会主催 エクタス協賛渋谷教育学園幕張中学校 学校説明会のご案内【参加無料】 5/30(金)に渋谷教育学園幕張中学校の学校説明会を開催いたします。同校は自調自考をモットーに生徒の成長を促し、海外大学も含め全国でも屈指の進…

お知らせピックアップ

2025/4/10

エクタス国語科より

『記述問題は後ろから考えよう』

学校でも新学年を迎え、入学式・始業式と行事が多かったことと思います。学校生活がようやく落ち着いたころにはすぐGW…でも、受験生にとっては「遊ぶ期間」ではなく「勉強漬けになる期間」かもしれませんね。 今年の開成中学の国語は…

エクタス国語科より

2025/4/9

お知らせピックアップ

小6「筑駒・御三家・駒東 最難関スーパー講座」【2025年度前期】申込受付中!

講座は土曜日午前を中心に設定、1科目から受講が可能です。受講生には担当講師のナビゲートにより個別カリキュラムを提案。 毎年筑駒・御三家・駒東中合格者を輩出するエクタスの看板講座。最難関校の入試傾向に直結する教科別講座を今…

お知らせピックアップ

pagetop